
Adding Facebook Pixel or Google Analytics
Tracking of a Facebook Pixel or a Google Analytics account only works if you use a
special url, to better guarantee the privacy of the visitor: instead of the link
https://guts.events/xxxxxx you MUST use https://widget.guts.events/xxxxxx. This
widget link can also be used as a source url to embed ticket-shop(s) on your
website.

Facebook Pixel
In order to connect your Facebook Pixel with this link, you have to add your Pixel
ID as a so-called query parameter to your link, as follows: “ fb=123456789101112”. If
your Pixel ID is “123456789101112”, you add this to the query parameter “fb=”. The
link will become like this:

https://widget.guts.events/xxxxxx?fb=123456789101112

Google Analytics
In order to connect your Google Analytics with this link you have to add your GA ID
as a query parameter to your link, as follows: “ga=UA-123456”. If your Pixel ID is
“UA-123456”, you add this to the query parameter “ga=”. The link will become like
this:

https://widget.guts.events/xxxxxx?ga=UA-123456

Multiple query parameters
Does your url have a query parameter? For example ?c=00AAEE, to set the main
color of your ticket shop? Then you MUST add additional query parameters by
using the “&” symbol, instead of “?”. Only the first parameter start with “?”.
Example:
https://widget.guts.events/xxxxxx?c=00AAEE&fb=123456789101112&ga=UA-123456

NOTE: DO NOT share the link the browser redirects to if you click on the link in the
dashboard!

https://guts.events/xxxxxx
https://widget.guts.events/xxxxxx
https://widget.guts.events/xxxxxx?fb=123456789101112
https://widget.guts.events/xxxxxx?ga=UA-123456
https://widget.guts.events/xxxxxx?c=00AAEE&fb=123456789101112&ga=UA-123456


Adding Google Tag Manager

Introduction
● A Google Tag Manager (GTM) ID can be given to each event/group of events,

whereby, if the visitor accepts cookies, various events and data are
forwarded to this specific GTM account, up to a successful payment.

● GUTS Tickets supports all o�cial tags & trackers that GTM o�ers.
● The most commonly used “Sandbox” Community Template scripts are also

supported (see below) and support for new Community Template scripts
can be provided upon request.

● New triggers and specific data can be supported on request.
● It is your responsibility to set up your Google Tag Manager properly.
● You can create a Google Tag Manager account for free at

https://tagmanager.google.com and documentation can be found at
https://support.google.com/tagmanager.

Add to an event / url
Tracking via your own GTM only works if you use a special url, to better guarantee
the privacy of the visitor: instead of the link https://guts.events/xxxxxx you MUST
use https://widget.guts.events/xxxxxx. This widget link can also be used as a
source url to embed ticket-shop(s) on your website.

To then connect your GTM to this link, you must add your GTM ID as a so-called
query parameter to the link, in the form of gtm=GTM-AB123456. If your GTM ID is
“GTM-AB123456”, add it to the query parameter “gtm=”. The link will then look like
this:

https://widget.guts.events/xxxxxx?gtm=GTM-AB123456

● NOTE: DO NOT share the link the browser redirects to when you click on the
link in the dashboard!

● NOTE: You cannot use the above Facebook Pixel/Google Analytics
parameters in combination with your own Google Tag Manager. If you want
to use GTM, you will also have to add Facebook Pixel and/or Google
Analytics to your GTM.

https://tagmanager.google.com
https://support.google.com/tagmanager
https://guts.events/xxxxxx
https://widget.guts.events/xxxxxx
https://widget.guts.events/xxxxxx?gtm=GTM-AB123456


Allowed pixels & scripts

Allowed:

● All templates of Google Tag Manager
● Some Community Templates (sandboxedScripts)

Blocked:

● Custom Scripts (customScripts)
● Community Templates that are not whitelisted

You can use Community Templates, but if it requires an external Javascript file, we
may need to whitelist it first. You can whitelist these external scripts by contacting
us. We will check the code to see if it is from a trusted source.



Events
The following events are forwarded to Google Tag Manager and can be used as a
trigger to activate a template/pixel.

Section Event Description Data Layer Variables

* Init Visitor has accepted
cookies and a link
with GTM has been
made

dataLayer.push({event:"CookiesConsentAccept"})

* PageView Visitor visits a (new)
page

dataLayer.push({
event: "PageView",
pagePath: "/",
pageRoute: "{Sectie: Queue/Shop/Account/Order}",
gateSlug: "{gateslug}",
shopSlug: "{shopslug}",
eventName: “{the name of an event}”,
eventSubname: “{subtitle of an event}”
})

Queue QueueNotStarted Visitor visits queue
that has not yet
been opened

dataLayer.push({event: "QueueNotStarted"})

Queue QueueOpen Visitor visits queue
that is open

dataLayer.push({event: "QueueOpen"})

Queue QueueEnter Visitor registers in
queue

dataLayer.push({event: "QueueEnter"})

Queue QueueWaiting Visitor is in the
queue

dataLayer.push({event: "QueueWaiting"})

Queue QueuePaused Queue is paused dataLayer.push({event: "QueuePaused"})

Queue QueueSoldout All tickets for which
Visitor is in the
queue are sold out

dataLayer.push({event: "QueueSoldout"})

Queue QueueTurn Visitor in the queue
is next

dataLayer.push({event: "QueueTurn"})

Shop ShowEventInfo Visitor clicks on
"more info" about
the event

dataLayer.push({event: "ShowEventInfo"})



Shop ShowFloorplan Visitor clicks on
interactive floorplan

dataLayer.push({event: "ShowFloorplan"})

Shop AddProduct Visitor adds a
product to the
shopping cart

dataLayer.push({
event: “AddProduct”,
name: “{name of product}”,
category: “{name of category}”,
amount: {number of products added},
ecommerce: {

currencyCode: '{currency code}',
add: {

products: [{
name: '{name of product}',
id: '{id of product}',
price: '{name of product}',
category: {name of category},
quantity: {number of products added}

}]
}

}
})

Shop RemoveProduct Visitor removes a
product from the
shopping cart

dataLayer.push({
event: “RemoveProduct”,
name: “{name of product}”,
category: “{name of category}”,
amount: {number of products added},
ecommerce: {

remove: {
products: [{

name: '{name of product}',
id: '{id of product}',
price: '{name of product}',
category: {name of category},
quantity: {number of products removed}

}]
}

}
})

Shop Checkout Visitor clicks on
"order"

dataLayer.push({
event: "Checkout",
currency: "EUR",
tickets: 1,
ticketsAmount: 21.21,
upsells: 0,
upsellAmount: 0,
total: 1,
totalAmount: 21.21,



products: [
{

name: “{name of product}”,
price: {price of a product},
quantity: {number of products},
type: {‘ticket’ or ‘upsell’}

}
],

ecommerce: {
currencyCode: 'EUR',
checkout: {

products: [{
name: '{name of product}',
id: '{id of product}',
price: '{name of product}',
category: '{name of category}',
quantity: {number of products removed}

}]
}

}
})

Account Login Visitor logs in dataLayer.push({
event: "Login",
age: null,
gender: null,
city: "",
country: ""
email: “”,
first_name: “”,
last_name: “”,
mobile_number: “”})

})

Account Signup New visitor creates
account

dataLayer.push({event: "Signup"})

Order OptIn Visitor accepts the
privacy opt-in of the
organization

dataLayer.push({event: "OptIn"})

Order Payment Visitor chooses
payment method

dataLayer.push({event: "Payment"})

Order Purchase Payment successful dataLayer.push({
event: "Purchase",
currency: “EUR”,
tickets: {number of total tickets} ,
ticketsAmount: {amount of tickets},
upsells: {number of upsell products},



upselAmount: {amount of upsell product},
total: {total product: tickets and upsell},
totalAmount: {total amount all products: tickets

and upsell}”,
order_id: {id of order},
status: “{if order is paid or not}*”,
daysInAdvance: {days before event},
products: [

{
name: “{name of product}”,
price: {price of a product},

quantity: {number of products},
type: {‘ticket’ or ‘upsell’}

}
],

ecommerce: {
purchase': {

actionField: {
id: {id of order},
revenue: {total amount all products: tickets

and upsell},
},
products: [{

name: '{name of product}',
id: '{id of product}',
price: '{name of product}',
category: {name of category},
quantity: {number of products removed}

}]
}

}
})

* pending-timeout means we can’t confirm if the
payment was actually successful yet since some
payment methods might take some time to confirm.

Pageviews
The PageView steps for the funnel are (ideally) as follows, once the visitor opens
the event widget/url(s):

1. https://widget.guts.events/{gate-id}/
○ If queue is on: Visitor enters phone number and email address and

joins queue.
2. https://widget.guts.events/{gate-id}/

○ If queue is on: Visitor's turn after a few minutes and then chooses
the desired event.

https://widget.guts.events/%7Bgate-id%7D/
https://widget.guts.events/%7Bgate-id%7D/


3. https://widget.guts.events/{gate-id}/
○ If no queue: Visitor has their turn immediately and sees a list of

events, and then chooses desired event/if 1 event: visitor
automatically goes to shop of event.

4. https://widget.guts.events/{gate-id}/{shop-id}/
○ Visitor visits the event page and can choose between a map or a list

of tickets ()
5. https://widget.guts.events/{gate-id}/{shop-id}/checkout/

○ Visitor selects the number of tickets and clicks "Order".
6. https://widget.guts.events/account/

○ Visitor checks the entered mobile number and requests a verification
code.

7. https://widget.guts.events/account/
○ Visitor receives a verification code by SMS and fills it in.

8. https://widget.guts.events/profile/
○ As a new customer, a visitor is shown a form, which must be

completed.
9. https://widget.guts.events/{gate-id}/{shop-id}/shop/orders/{order-id}/

○ Visitor gets an overview of the order and clicks "Pay".
10. https://widget.guts.events/{gate-id}/{shop-id}/shop/orders/{order-id}/pay/

○ Visitor receives an overview of payment methods and selects one.
11. Visitor is redirected to chosen payment methods and settles (external page

or app)
12. https://widget.guts.events/{gate-id}/{shop-id}/shop/orders/{order-id}/status/

○ Visitor will see a status page if the payment is successful - The
"Purchase" event is therefore forwarded separately so that you know
that the payment has actually been successful.

https://widget.guts.events/%7Bgate-id%7D/
https://widget.guts.events/%7Bgate-id%7D/%7Bshop-id%7D/
https://widget.guts.events/%7Bgate-id%7D/%7Bshop-id%7D/checkout/
https://widget.guts.events/account/
https://widget.guts.events/account/
https://widget.guts.events/profile/
https://widget.guts.events/%7Bgate-id%7D/%7Bshop-id%7D/shop/orders/%7Border-id%7D/
https://widget.guts.events/%7Bgate-id%7D/%7Bshop-id%7D/shop/orders/%7Border-id%7D/pay/
https://widget.guts.events/%7Bgate-id%7D/%7Bshop-id%7D/shop/orders/%7Border-id%7D/status/


Pixel integration example: Facebook Pixel
Adding a tracker through our Google Tag Manager integration works a bit di�erent
then just adding it directly to a website like you normally would. Out of the box, no
triggers or data will be sent to your trackers. You have to set up a pageview pixel
and an ecommerce pixel.

For the basic functionalities of Facebook Pixel pgaeview tracking, at least the
PageView trigger will have to be added, so that every new page that the visitor
uses will be forwarded to Facebook (the standard “All Pages” trigger from GTM will
not work!):

1. Add the Facebook Pixel as a template to your GTM Account. You can find
this in the Community Gallery.

2. Add a new Trigger: a Custom Event with the event: PageView. You can name
this anything you’d like, but it is important that the “Custom Event” maps
with one of the triggers we provide (in the table above).

3. Add the Facebook Pixel as a new Tag, and enter your Facebook Pixel ID. As
Event Name add PageView.

4. Add to the created Tag the previously created trigger with event: PageView.
5. Publish your changes and from now on all page visits of visitors to your

event(s) will be forwarded to Facebook (provided these visitors have
accepted cookies).



Facebook Pixel with Ecommerce dataLayer Integration
For every event that contains an ecommerce object the Facebook Pixel can be used with the
Enhanced Ecommerce dataLayer integration.

1. Add the Facebook Pixel as a template to your GTM Account. You can find
this in the Community Gallery.

2. Add new Triggers: Custom Events with the event: AddProduct,
RemoveProduct. Login, Purchase. You can name this anything you’d like, but
it is important that the “Custom Event” maps with one of the triggers we
provide (in the table above).

3. Add the Facebook Pixel as a new Tag and enter your Facebook Pixel ID.
Enable “Enhanced Ecommerce dataLayer Integration” and “set automatically
from dataLayer”. Also “Enable Advanced Matching” can be used. See user
parameter values in de tabel above.

4. Add the created Triggers previously (AddProduct, RemoveProduct, Login and
Purchase) to the Tag.

5. Publish your changes and from now on all ecommerce events from a visitor
will be forwarded to Facebook (provided these visitors have accepted
cookies).




